Plasticity in reflex pathways controlling stepping in the cat.

نویسندگان

  • P J Whelan
  • K G Pearson
چکیده

Previous studies have shown that stimulation of group 'I' afferents from ankle extensor muscles can prolong the cycle period in decerebrate walking cats and that the magnitude of these effects can be altered after chronic axotomy of the lateral-gastrocnemius/soleus (LGS) nerve. The effectiveness of LGS group I afferents in prolonging the cycle period decreases after axotomy, whereas the effectiveness of the uncut medial-gastrocnemius (MG) group I afferents is increased. The objectives of this investigation were to establish the time course of these changes in effectiveness and to determine whether these changes persist after transection of the spinal cord. The effects of stimulating the LGS and/or MG group I afferents on the cycle period were examined in 22 walking decerebrate animals in which one LGS nerve had been cut for 2 to 31 days. The effectiveness of LGS group I afferents declined progressively in the postaxotomy period, beginning with significant decreases at 3 days and ending close to zero effectiveness at 31 days. Large increases in the effectiveness of MG group I afferents occurred 5 days after axotomy, but there was no progressive change from 5 to 31 days. To test whether these changes in effectiveness were localized to sites within the spinal cord, the cord was transected in some decerebrate animals and stepping induced by the administration of L-DOPA L-3-4 dihydroxyphenylalanine (L-DOPA) and Nialamide. The effects of stimulating the MG and/or the LGS group I afferents on the cycle period were reexamined. In all four animals tested, stimulating the axotomized LGS group I afferents had a reduced effectiveness during locomotor activity in both the decerebrate and spinal states, whereas the increased effectiveness of the MG group I afferents was retained after transection of the spinal cord in two of five animals. Different mechanisms may be responsible for the changes in strength of the LGS and MG group I afferent pathways that project onto the rhythm generating sites in the spinal cord. This possibility follows from our observations of a linear relationship between the time after axotomy and decreased effectiveness of LGS group I afferents but no significant relationship between time postaxotomy and increased effectiveness of MG group I afferents; no significant relationship between the decreased effectiveness of LGS group I afferents and the increased effectiveness of MG group I afferents; and, after spinalization, consistent (4/4 cases) preservation of decreased LGS effectiveness but frequent (3/5 cases) loss of increased MG effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity

In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...

متن کامل

Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous Robot-Assisted Passive Stepping

Both active and passive rhythmic limb movements reduce the amplitude of spinal cord Hoffmann (H-) reflexes in muscles of moving and distant limbs. This could have clinical utility in remote modulation of the pathologically hyperactive reflexes found in spasticity after stroke or spinal cord injury. However, such clinical translation is currently hampered by a lack of critical information regard...

متن کامل

Control of locomotion in the decerebrate cat.

Many of the general concepts regarding the control of walking were described years ago by: Sherrington (1906) Integrative Actions of the Nervous System. Yale University Press: New Haven, CT; Sherrington (1910a) Remarks on the reflex mechanism of the step, Brain 33, 1-25; Sherrington (1910b) Flexor-reflex of the limb, crossed extension reflex, and reflex stepping and standing (cat and dog), J. P...

متن کامل

Strongly stable multi-time stepping method with the option of controlling amplitude decay in responses

Recently, multi-time stepping methods have become very popular among scientist due to their high stability in problems with critical conditions. One important shortcoming of these methods backs to their high amount of uncontrolled amplitude decay. This study proposes a new multi-time stepping method in which the time step is split into two sub-steps. The first sub-step is solved using the well-...

متن کامل

Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG.

We have examined the linkage between patterns of activity in several hindlimb motor pools and the modulation of oligosynaptic cutaneous reflex pathways during fictive locomotion in decerebrate unanesthetized cats to assess the notion that such linkages can shed light on the structure of the central pattern generator (CPG) for locomotion. We have concentrated attention on the cutaneous reflex pa...

متن کامل

Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat.

Electrophysiological studies in anesthetized animals have revealed that pathways carrying force information from Golgi tendon organs in antigravity muscles mediate widespread inhibition among other antigravity muscles in the feline hindlimb. More recent evidence in paralyzed or nonparalyzed decerebrate cats has shown that some inhibitory pathways are suppressed and separate excitatory pathways ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 1997